Randomization Inference for Treatment Effect Variation

نویسندگان

  • Peng Ding
  • Avi Feller
  • Luke Miratrix
چکیده

Applied researchers are increasingly interested in whether and how treatment effects vary in randomized evaluations, especially variation not explained by observed covariates. We propose a model-free approach for testing for the presence of such unexplained variation. To use this randomization-based approach, we must address the fact that the average treatment effect, generally the object of interest in randomized experiments, actually acts as a nuisance parameter in this setting. We explore potential solutions and advocate for a method that guarantees valid tests in finite samples despite this nuisance. We also show how this method readily extends to testing for heterogeneity beyond a given model, which can be useful for assessing the sufficiency of a given scientific theory. We finally apply our method to the National Head Start Impact Study, a large-scale randomized evaluation of a Federal preschool program, finding that there is indeed significant unexplained treatment effect variation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomization Inference for the Trimmed Mean of Effects Attributable to Treatment

Randomization is described by Fisher (1935) as the reasoned basis for inference about the effectiveness of treatments. Fisher advocated both using randomization in designing experiments and using “randomization inference” to analyze experiments that have been randomized. Randomization inference is inference that assumes only the physical act of randomization for its validity. It provides exact,...

متن کامل

Decomposing Treatment Effect Variation

Understanding and characterizing treatment effect variation in randomized experiments has become essential for going beyond the “black box” of the average treatment effect. Nonetheless, traditional statistical approaches often ignore or assume away such variation. In the context of a randomized experiment, this paper proposes a framework for decomposing overall treatment effect variation into a...

متن کامل

A Closer Look at Testing the “No-Treatment-Effect” Hypothesis in a Comparative Experiment1

Standard tests of the “no-treatment-effect” hypothesis for a comparative experiment include permutation tests, the Wilcoxon rank sum test, two-sample t tests, and Fisher-type randomization tests. Practitioners are aware that these procedures test different no-effect hypotheses and are based on different modeling assumptions. However, this awareness is not always, or even usually, accompanied by...

متن کامل

Political Science 236 Randomization inference

Most of this course will be devoted to the study of treatment effects in the absence of random assignment of subjects to treatments. As we will see, performing causal inference in the absence of random treatment assignment requires that we make fairly strong assumptions. In contrast, when treatment is assigned randomly, treatment effects can be estimated with very mild assumptions and, very imp...

متن کامل

Dynamic randomization and a randomization model for clinical trials data

Randomization models are useful in supporting the validity of linear model analyses applied to data from a clinical trial that employed randomization via permuted blocks. Here, a randomization model for clinical trials data with arbitrary randomization methodology is developed, with treatment effect estimators and standard error estimators valid from a randomization perspective. A central limit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014